
20 December 2023

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Hybrid Workflows for Large - Scale Scientific Applications

Publisher:

Published version:

DOI:10.3997/2214-4609.2022615029

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

European Association of Geoscientists and Engineers

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1890257 since 2023-02-04T17:51:50Z

Sixth EAGE High Performance Computing Workshop

19-21 September 2022, Milan, Italy

HYBRID WORKFLOWS FOR LARGE-SCALE SCIENTIFIC APPLICATIONS

Iacopo Colonnelli and Marco Aldinucci
University of Torino, Computer Science Dept.

Author’s copy (preprint) of Iacopo Colonnelli and Marco Aldinucci, “Hybrid Workflows for Large - Scale

Scientific Applications,” in Sixth EAGE High Performance Computing Workshop, Milano, Italy, 2022, p. 1-5.

doi: 10.3997/2214-4609.2022615029.

Introduction

Large-scale scientific applications are facing an irreversible transition from monolithic, HPC-oriented

codes to modular and portable deployments of specialized (micro-)services. The reasons behind these

transitions are many. Standard MPI-based distributed solvers are increasingly coupled with Deep

Learning to gain efficiency in some specific simulation phases. Data analytics and visualization tools,

crucial for interpretability, are increasingly moving from queue-based HPC clusters to more accessible

on-demand cloud resources. Finally, the advent of specialized hardware accelerators (e.g., GPGPUs,

neuromorphic processors, and quantum machines) fosters additional reengineering efforts to port each

component of a complex pipeline to the best-suited architecture.

In this scenario, topology-aware Workflow Management Systems (WMSs) play a crucial role. The

intrinsic modularity of workflow abstractions facilitates the design of heterogeneous applications. The

explicit encoding of (true) data dependencies among workflow steps allows distributed runtime systems

to extract the maximum amount of concurrency, improving performances. Topology-awareness allows

an explicit mapping of workflow steps onto potentially heterogeneous locations, improving portability

and reproducibility and allowing automated executions on top of hybrid architectures (e.g., cloud+HPC

facilities or classical+quantum machines). Finally, topology-aware WMSs can relieve domain experts

of the weight of implementing non-functional requirements like components’ life-cycle orchestration,

secure and efficient data transfers, fault tolerance, and cross-cluster execution of urgent workloads.

If the additional effort of mastering a feature-rich coordination language is worth it in the case of

production-ready workflows, it can be undue stress when prototyping a novel research approach.

However, also proof-of-concept experiments should be reproducible, and in many situations, they also

need to scale. Augmenting interactive Jupyter Notebooks with distributed workflow capabilities allows

domain experts to prototype and scale applications using the same technological stack. Jupyter

Notebooks have a feature-rich and user-friendly web interface, which is far more accessible than the

SSH-based remote shells commonly exposed by HPC facilities worldwide.

This workshop will showcase how these general methodologies can be applied to a typical geoscience

simulation pipeline based on the Full Wavefront Inversion (FWI) technique. In particular, a prototypical

Jupyter Notebook will be executed interactively on the cloud. Preliminary data analyses and post-
processing will be executed locally on a commodity virtual machine. Conversely, the computationally

demanding optimization loop will be scheduled on a remote HPC cluster to improve performance.

Hybrid workflows and StreamFlow

A hybrid workflow is a workflow whose steps can span multiple, heterogeneous, and independent

computing infrastructures. Support for multiple infrastructures implies that each step can target a

different location in charge of executing it. That location must have access to all the input data and will

contain all the output data after the execution. Locations can be heterogeneous, either at the hardware

level (e.g., containing GPUs, FPGAs, or quantum devices) or at the software level (e.g., exposing

different interfaces for authentication, communication, and scheduling). Finally, direct communications

and data transfers among independent locations may not be allowed.

Sixth EAGE High Performance Computing Workshop

19-21 September 2022, Milan, Italy

A suitable hybrid workflow model should then couple a standard workflow model with the topology of

available locations and mapping between steps and locations. To be consistent with actual WMSs

implementations, the model must distinguish between control locations belonging to the WMS control

plane and processing locations that can only execute or delegate commands to its neighbors. The

presence of a channel from location 𝑙1 to location 𝑙2 means that location 𝑙1 can initiate a connection to

𝑙2, even if the connection is bidirectional. A mapping relation identifies the set of locations in charge of

executing a step. Note that multiple steps mapped to the same location create a temporal constraint, i.e.,

concurrent executions can be serialized if the location does not have enough resources to process them

in parallel. Conversely, a step mapped to multiple locations creates a spatial constraint, i.e., all locations

must be available simultaneously to start the execution. Figure 1 shows an example of hybrid workflow

mapped onto a hybrid cloud+HPC environment.

Figure 1 Example of hybrid workflow model.

The StreamFlow framework1 is a runtime support for hybrid workflows written entirely in Python [1].

StreamFlow has been designed to seamlessly integrate with external coordination semantics, allowing

users to augment existing workflows with hybrid capabilities. In particular, it is fully compliant with

the Common Workflow Language (CWL) open standard [2], also supporting scatter/gather data parallel

patterns. Steps can be mapped onto several locations: Docker or Singularity containers, complex

microservice-based applications described with Docker Compose files or Helm charts, SSH-equipped

cloud VMs or bare metal nodes, and HPC workload managers (Slurm or PBS). Plus, its plugin

mechanism makes it easy to add new location types or to replace some other features with custom

implementations, e.g., the scheduling policy, the fault-tolerance strategy, or the data management layer.

Literate workflows and Jupyter Workflow

Despite all the advantages of scientific WMSs in modularity, portability, and reproducibility, domain

experts often prefer to stick with standard, general-purpose languages to develop and publish their

experiments. Some apparent reasons behind this choice are the additional effort required to learn a new
framework, the increased difficulty in maintaining coherence between host and coordination logic, and

the lack of a de-facto standard WMS that everyone should know and use.

The literate workflows paradigm derives from the concept of literate computing [3]. It interleaves host

and coordination logic in the same document (a computational notebook) but at the same time keeps

them separated. A computational notebook is a list of code cells executed sequentially in a given order.

The idea is to treat each cell as a workflow step, using the related metadata to express input and output

dependencies, locations, mapping relations, data-parallel patterns and other properties. A workflow

graph can be extracted from this representation, and independent steps can be executed concurrently in

1 https://streamflow.di.unito.it

https://streamflow.di.unito.it/

Sixth EAGE High Performance Computing Workshop

19-21 September 2022, Milan, Italy

different locations, modelling hybrid literate workflows. It is possible to show [4] that that if an

associative operator can properly reconcile conflicting identifiers (i.e., clashes due to Bernstein’s output

dependencies), then a strategy exists to obtain a sequentially equivalent workflow graph.

Jupyter Workflow2 extends the IPython software stack to support hybrid literate workflows [4]. Its

logical architecture consists of three main components. A JSON-based coordination metadata format

allows users to model cell configurations and location topologies standardized through the Notebook’s

metadata. A dependency resolver automatically identifies the input dependencies of each cell by

inspecting the code’s Abstract Syntax Tree (AST). Finally, a Jupyter stack extension hides workflow

metadata behind a Graphical User Interface (GUI), communicates them to the Jupyter kernel and relies

on StreamFlow to build and orchestrate the hybrid workflow graph.

Evaluation

We tested the capabilities of Jupyter Workflow on a typical geoscience simulation pipeline based on

the Full Wavefront Inversion (FWI) technique [5]. Applying the FWI, it is possible to create an image
of the subsurface from velocity recorded data, solving the so-called seismic inversion problem. The

FWI can be expressed as follows:

min
𝑚

Φ𝑠(𝑚) =
1

2
‖𝑃𝑟𝐴(𝑚)

−1𝑃𝑠
𝑇𝑞𝑠 − 𝑑‖2

2

where 𝑚 is the squared slowness of the wave, 𝑃𝑟 is the sampling operator at the receiver location, 𝑃𝑠
𝑇 is

the injection operator at the source location, 𝐴(𝑚) is an operator that represents the discretized wave

equation matrix, 𝑢 = 𝐴(𝑚)−1𝑃𝑠
𝑇𝑞𝑠 is the discrete synthetic pressure wavefield, 𝑞𝑠 is the pressure

source, and 𝑑 is the measured data. This problem can be solved using a gradient-based method:

∇Φ𝑠(𝑚) = ∑𝑢[𝑡]

𝑛𝑡

𝑡=1

𝑣𝑡𝑡[𝑡] = 𝐽𝑇𝛿𝑑𝑠

where 𝑛𝑡 is the number of computational time steps, 𝛿𝑑𝑠 = (𝑃𝑟𝑢 − 𝑑) is the residual between measured

and modelled data, 𝐽 is the Jacobian operator, and 𝑣𝑡𝑡 is the second-order time derivative of the adjoint

wavefield, such that 𝐴𝑇(𝑚)𝑣 = 𝑃𝑟
𝑇𝛿𝑑.

We started from a Jupyter Notebook3 that uses the Devito library [6] to solve the FWI for a circular 2D

model domain. Devito is a performance-oriented package implementing optimized stencil computation

through just-in-time (JIT) compilation. It can benefit from the presence of physical hardware (exploiting

its capabilities to fine-tune kernels), parallelize computation with MPI+OpenMP, and rely on hardware

accelerators. In this workshop, we concentrate on CPU-based computations. Firstly, we ran the Jupyter

Workflow notebook on a cloud VM with 8 cores and 32 GB RAM; secondly, we offloaded heavy

computations on a bare metal node with a more performant Intel Xeon Gold 6230 (40 cores, 2.10 GHz)

and 1.47TB RAM. Except for the gradient computation cell, all the notebook cells execute immediately

on the local VM. Therefore, we concentrate on gradient computation performances.

As first step we tested the multicore scalability within a single node; we configured Devito to compile

OpenMP-based versions of the kernels. By properly setting the OMP_NUM_THREADS variable, we

studied the scalability up the maximum core count on the VM and the bare metal node. Unexpectedly,

the time-to-solution remained almost constant, independent of the number of involved threads. Looking

at the generated C code, OpenMP is only used for parallelizing (via OMP SIMD directive) of a tiny

portion of the code and the execution time, resulting in little to no speedup (in conformity with

Amdahl’s Law).

2 https://jupyter-workflow.di.unito.it
3 https://github.com/devitocodes/FWI_lectures/blob/main/lecture11/L11_numerical_implementations_of_fwi.ipynb

https://jupyter-workflow.di.unito.it/
https://github.com/devitocodes/FWI_lectures/blob/main/lecture11/L11_numerical_implementations_of_fwi.ipynb

Sixth EAGE High Performance Computing Workshop

19-21 September 2022, Milan, Italy

As a second step, we studies te overhead intrioduced by the VM against using a bare metal node. For

this setting, we kept OMP_NUM_THREADS equal to 1. We scaled the problem size by doubling nt at

each iteration, moving from 21 to 336 (16x). The result is an almost 2x speed increase on the bare metal

machine, which is higher than expected and the motivation for which is yet to be analyzed (the ratio

between vcpu and cores is 1:1). Note that Devito kernels are JIT-recompiled on the remote location,

potentially with a different configuration, to maximize performance on available resources. Obtaining

this behavior without changing the business code is a valuable feature per se. However, we are still

using a single core.

Finally, we further parallelized the code according to the methodology described in [7] by turning the

gradient computation loop into a map-reduce computation: first compute all the residuals in parallel,

then reduce them by sum to compute the gradient. The benefit is that multiple residuals can be computed

in parallel by multiple cores or even multiple nodes, reaching better scalability. However, the main

drawback is that the problem becomes I/O bound, as the residual data structures are large (tens of GBs)
and they should be moved across locations. For this, minimizing data movement and adopting high-

speed communication channels is crucial for performance, highlighting the HPC nature of the problem.
A promising strategy, which will be investigated in the future, is to work at the file-system level to

enable in-memory streaming data movements (using efficient burst buffers for swapping) without

changing the application code. This mechanism allows starting the reduce phase as soon as data

structures become available and avoid involving the shared file system.

Acknowledgements

This article describes work undertaken in the context of the ACROSS project4, ‘‘HPC Big Data

Artificial Intelligence Cross Stack Platform Towards Exascale’’, and the EUPEX project5, “European

Pilot for Exascale”, which received funding from the European High-Performance Computing Joint

Undertaking (JU) under grant agreement No. 955648 and 101033975, respectively. We also want to

give a special thanks to Nicola Bienati (Eni S.p.A.) for providing us the evaluation Notebook and for

the fundamental advice on how to approach scalability of a seismic inversion problem.

References

[1] I. Colonnelli, B. Cantalupo, I. Merelli and M. Aldinucci, "StreamFlow: cross-breeding Cloud

with HPC," IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 1723-1737,

2021.

[2] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanic, H. Ménager, S. Soiland-

Reyes, B. Gavrilovic, C. A. Goble and The CWL Community, "Methods Included: Standardizing

Computational Reuse and Portability with the Common Workflow Language," Communications

of the ACM, vol. 65, no. 6, pp. 54-63, 2022.

[3] K. J. Millman and F. Pérez, "Developing open-source scientific practice," in Implementing

Reproducible Research, Chapman and Hall/CRC, 2014, pp. 149-183.

[4] I. Colonnelli, M. Aldinucci, B. Cantalupo, L. Padovani, S. Rabellino, C. Spampinato, R. Morelli,

R. Di Carlo, N. Magini and C. Cavazzoni, "Distributed workflows with Jupyter," Future

Generation Computer Systems, vol. 128, pp. 282-298, 2022.

[5] A. Fichtner, Full Seismic Waveform Modelling and Inversion, Springer Berlin, Heidelberg, 2011.

[6] F. Luporini, M. Louboutin, M. Lange, N. Kukreja, P. Witte, J. Hückelheim, C. Yount, P. H. J.

Kelly, F. J. Herrmann and G. J. Gorman, "Architecture and Performance of Devito, a System for

Automated Stencil Computation," ACM Transactions on Mathematical Software, vol. 46, no. 1,

2020.

4 https://acrossproject.eu
5 https://eupex.eu

https://acrossproject.eu/
https://eupex.eu/

Sixth EAGE High Performance Computing Workshop

19-21 September 2022, Milan, Italy

[7] M. Aldinucci, V. Cesare, I. Colonnelli, A. R. Martinelli, G. Mittone, B. Cantalupo, C. Cavazzoni

and M. Drocco, "Practical parallelization of scientific applications with OpenMP, OpenACC and

MPI," Journal of Parallel and Distributed Computing, vol. 157, pp. 13-29, 2021.

