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Abstract—In recent years we have understood the importance
of analyzing and sequencing human genetic variation. A relevant
aspect that emerged from the Covid-19 pandemic was the need to
obtain results very quickly; this involved using High-Performance
Computing (HPC) environments to execute the Next Generation
Sequencing (NGS) pipeline. However, HPC is not always the
most suitable environment for the entire execution of a pipeline,
especially when it involves many heterogeneous tools. The ability
to execute parts of the pipeline on different environments can
lead to higher performance but also cheaper executions. This
work shows the design and optimization process that led us to
a state-of-the-art Variant Calling hybrid workflow based on the
StreamFlow Workflow Management System (WfMS). We also
compare StreamFlow with Snakemake, an established WfMS
targeting HPC facilities, observing comparable performance on
single environments and satisfactory improvements with a hybrid
cloud-HPC configuration.

Index Terms—StreamFlow, Hybrid workflow, High Perfor-
mance Computing, cloud computing

I. INTRODUCTION

The computing power available in a single High-
Performance Computing (HPC) system has exponentially in-
creased for over 30 years, as documented by the TOP500
Supercomputer Database1. A likewise aggressive growth in-
terested the cloud computing systems in the last ten years.
It is challenging to estimate the aggregate computing power
in the cloud, even if it can be observed that the global
cloud computing market is expected to expand at a compound
annual growth rate of 14.1% from 2023 to 2030 [1]. The
HPC and cloud computing paradigms, developed with different
objectives, have been sustained by different applications and
(for this) exhibit different computing features.

In this work, we study how the cloud and the HPC
paradigms can be jointly used to optimize the execution of
modern scientific applications. We adopt the Variant Calling
(VC) pipeline, i.e. a Next Generation Sequencing (NGS)

1https://www.top500.org

application, as a running example. NGS is a class of ap-
plications that were not in the traditional basket of HPC
applications and thus can fall in the area of one of the
cloud service models as Infrastructure as a Service (IaaS).
However, computing demand is becoming increasingly critical
due to the explosion of NGS data output (to which COVID-
19 significantly contributed). Many other applications classes
are heading the same path, starting from Artificial Intelligence
(AI) applications based on Deep Neural Networks (DNNs) [2].

HPC systems are designed with the primary goal of comput-
ing performance. HPC users embrace larger systems to reduce
the wall-clock time needed to solve a problem (strong scaling)
or increase the problem size while maintaining the constant
wall-clock execution time (weak scaling). Many applications
can benefit from the HPC approach, even if the primary
application class is rooted in scientific applications aiming
at solving problems too big for other computing systems:
simulations, large equations solving, digital twins, and, re-
cently, the training of very large AI models. Cloud systems
are designed to shift the management of computing aspects
(from hardware management to configuration to operation)
to a specialized firm or business unit, the cloud provider,
which provides computing services to the users. Cloud focuses
on many services (and micro-services) and their composition
rather than a few compute demanding applications.

NGS pipelines generally include all computing applications
used to analyze (different) aspects of DNA and RNA data.
The term pipeline has become popular in several scientific
areas to indicate the execution of a sequence of computational
steps organized along a Directed Acyclic Graph (DAG) of data
dependencies among different steps, which are implemented
by different executables (sequential or parallel). In the context
of this work, and more in general in scientific computing, the
term workflow subsumes the term pipeline. A workflow can
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be represented as a DAG2; each step in a workflow has (data)3

dependencies on the previous steps and can be performed
after they have finished their work correctly. A Workflow
Management System (WfMS) is used to manage the data
dependencies, the scheduling in the execution environment and
other aspects of the workflow execution (e.g. fault tolerance).

Hybrid workflow systems aim to support deploying a single
workflow (or a batch of them) across different execution plat-
forms (such as cloud and HPC) exhibiting different compute
capabilities in terms of latency, throughput, security, robust-
ness, geographic location, matching each workflow’s principal
requirements with the best platform to execute it. StreamFlow
[2], [3], a WfMS designed by the parallel computing group
at the University of Turin, explicitly aims to reach this goal
by implementing the hybrid workflow paradigm. Supporting
different HPC and cloud environments, it allows orchestrating
the distributed execution of a workflow through a declarative
description of the available execution environments.

This work aims to evaluate the potential of a combined
cloud-HPC environment in the NGS domain evaluating speed
performance. For this, we ported a Variant Calling pipeline to
a hybrid workflow, optimizing the data movements between
systems without a shared file-system and exploiting the het-
erogeneity of platforms. The original VC pipeline was devel-
oped using Snakemake, a WfMS which exposes a proprietary
Domain Specific Language (DSL) for describing workflow.
Firstly, we defined the workflow according to the StreamFlow
programming model, using the Common Workflow Language
(CWL) open standard. Next, we studied and improved the
pipeline’s bottlenecks by introducing more parallelism in the
slow pipeline stages. To this end, we studied each step’s
resource requirements in detail, identifying which could be
more conveniently executed on HPC or cloud environments.
Furthermore, we analyzed the amount of data involved in
each data dependency to decide if moving the computation
to another platform is worth it, i.e. if the performance gain is
greater than the data movement overhead. Both these aspects
are crucial to configure an efficient hybrid workflow execution.

II. BACKGROUND

A. Hybrid workflow

The workflows, in general, are heterogeneous, i.e. the steps
in the workflow can have different requirements to be executed
or simply for optimal performance. However, having a single
environment that satisfies the requirements of all the workflow
steps can be difficult. In addition, it can be expensive to keep
this specific environment for the entire workflow execution but
exploit the maximum of the resources only for some steps.

The hybrid workflow paradigm aims to execute the work-
flow steps in their optimal environment and use the involved
environments only for the necessary time. However, it does

2Not all workflows can be modelled as DAGs; for example, an exception
are the iterative workflows

3Dependencies can be modelled as control flow and data flow. In the case of
control flow, the dependencies do not explicitly carry data between subsequent
steps.

not guarantee better performance than executions in a single
environment. Involving multiple environments, it could be
necessary to move data between them if they do not have
a shared memory zone. In the case of scientific workflows,
data sizes can be substantial; moving these data will involve
time affecting workflow performance. This cost is one of
the main aspects in deciding the configuration for hybrid
executions. Finding the right compromise between the cost of
moving data and the performance gained in using a different
environment is necessary. The hybrid workflow paradigm can
have different implementations as Pegasus [4], DagOnStar [5]
and Mashup [6]; another implementation is the StreamFlow
WfMS.

B. StreamFlow WfMS

CWL workflow 
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HPC
Docker/

Kubernetes
…CWL interpreter

StreamFlow 

extensions
Connector

StreamFlow executor

Data manager
Deployment 

manager
Scheduler

Deployment

description files
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Fig. 1: StreamFlow architecture. On the top, the components
of the StreamFlow file; below, StreamFlow codebase showing
the different modules as Connector, Scheduler, Data manager.

StreamFlow is a WfMS that orchestrate the hybrid workflow
in distributed and heterogeneous environments. It adheres to
the CWL standard to describe the workflow model. However,
it has a clear division between the workflow model and the
configuration for hybrid workflow. The StreamFlow file is a
YAML file where are defined the location of the CWL file
(.cwl extension), the environments involved and how to ac-
cess them, and the coupling between steps and environments.
This approach makes the workflows more portable and easy
to configure for hybrid execution workflows already developed
with the CWL standard.

StreamFlow architecture has well-defined modules, as
shown the Fig. 1. It supports many environments to allow
workflow execution on multi-environments; for this goal, it
implements Connector objects to communicate with the dif-
ferent environments, cloud and HPC. Many modules use these
connectors. First of all, the deployment manager creates and
destroys them. The Scheduler chooses the best resources to
execute a step; for this goal, it uses the connector to check the
status of the remote resources. When multiple resources are
available, a Policy is applied to choose the best. The default
Policy implementation tries to minimize the data movement
(data locality), however, StreamFlow provides an interface
to allow the user to implement the preferred strategy. The
Data manager is essential for hybrid execution to know the



Fig. 2: Variant Calling Pipeline represented with BPMN standard.

data’s location and, when necessary, copy them across the
environments through the connector. Indeed, when we want
to execute a step in a different environment, the input data
of the step must be present. If the environments where the
data are located and the environment where the step must be
executed do not have a shared persistence area, there is an
additional cost to copy the data.

III. RESOURCES USED

The HPC HLRS centre in Stuttgart, Germany, specifically
the Hawk infrastructure, was used for the speedup analysis of
the tool used in the VC pipeline. Instead, the resources of the
Cineca centre in Bologna, Italy, were used for the executions
in the experiment section. Cineca provides access to its cloud
resources as IaaS. The cloud infrastructure, named ADA cloud,
is based on OpenStack Wallaby. We used the Galileo100
infrastructure for the HPC resources. The connection speed
is 150MB/s between the VM created on ADA cloud and HPC
Galileo100, and it is very important for hybrid executions.
The tools used in the VC pipeline are: Trim Galore (v0.6.6),
Bowtie2 (v2.4.1), GATK4 (v4.2.6.1), Picard (v2.27.1), Anno-
var (v2020Jun08).

IV. VARIANT CALLING PIPELINE

The advance of NGS technologies has enabled a wide ex-
pansion of clinical genetic testing both for inherited conditions
and diseases. Human genetic variation study is the discovery
and description of the genetic contribution to many human
diseases. It entails both variant calling and interpretation. A
variant call is a conclusion that there is a nucleotide difference
versus some reference at a given position in an individual
genome or transcriptome, often referred to as a SNV. An
accurate variant calling in NGS is the critical step upon which
the interpretation process relies. There are several methods for
calling variants. Here we introduce GATK4, a toolkit whose
tools are among the most widely used for variant calling
pipelines [7], [8].

A. Methods

Fig. 2 shows the pipeline. We use Trim Galore to trim
adapters4. We use Bowtie2 [9] to align reads to the human

4https://www.bioinformatics.babraham.ac.uk/projects/trim galore/

genome hg385. Then we follow the GATK pipeline [10]–
[13]. We add read groups and mark duplicates using Picard6.
We recalibrate bases using BaseRecalibrator and ApplyBQSR
from GATK4. We call haplotype caller in GVCF mode to
generate Genomic VCF (gVCF). We import single-sample
GVCFs into GenomicsDB before joint genotyping. We then
perform joint genotyping on the GenomicsDB workspace
created with GenomicsDB. These last three GATK4 tools, used
by the togvcf, genomeDB and jointcall, have a parallel version
of the tools, but they are still in beta; thus, we decided not to
use them. Nevertheless, to improve the pipeline performance,
we split the chromosomes interval7 and generate new step
instances to execute them in parallel. In the figure, indeed,
on the three steps, there are two scatters8 on so-called sub-
intervals. These scatters produce many small fragments of the
original output data; thus, two new steps, named merge * in
the figure, are added to combine the results. These new steps
use the SortVcf tool of Picard toolkit. Furthermore, two steps,
named aggregate *, are used to create the sub-intervals with a
different number of chromosomes. We hard filter the variants
and then finally annotate the variants using Annovar [14].

B. Speedup analysis
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Fig. 3: Strong scaling. On the left, the steps trim, tosam,
annotate. On the right, the steps togvcf, genomeDB and
jointcall with increasing the sub-interval size and cores.

The first activity on the pipeline was to improve its per-
formance. We focus on optimizing the tools’ hyperparameters

5https://gatk.broadinstitute.org/hc/en-us/articles/
360035890811-Resource-bundle

6http://broadinstitute.github.io/picard/
7https://gatk.broadinstitute.org/hc/en-us/community/posts/

360063088471-Speeding-up-GenotypeGVCFS-GATK4
8In CWL, the multi-instance pattern is implemented by the Scatter feature



to exploit the parallelism. We isolated and analyzed each step
individually, executing each with an incremental number of
cores and the input data from our Whole Exome Sequencing
(WES) dataset. This study aims to measure the strong scaling,
which is subject to the Amdahl’s law. The ideal speedup
increases linearly with the number of processes.

Fig. 3, on the left, shows the speedup analysis of three tools
with a hyperparameter to introduce parallelism. The tools are
used in the steps trim, tosam and annotate. Instead, on the
right of the figure, there is the speedup of the tool used in
togvcf, genomeDB and jointcall. The tools involved, as said,
do not have hyperparameters for parallelization, but the scatter
was introduced in the steps for this goal. The aggregate *
steps can change the number of instances of these steps; thus,
we analyze the performance of the steps with an increasing
number of sub-intervals considering all 25 chromosomes.

From these analyses, we identify the optimal number of
cores. For the trim step is 16 cores for each instance, while for
tosam 32 core and annotate about 24 cores. Instead, the steps
togvcf, genomeDB, and jointcall perform well when generating
an instance for each chromosome and are executed in parallel.

V. WFMSS EXPERIMENTS

In these experiments, we execute the pipeline with the
cloud and HPC environments using two WfMSs: StreamFlow
and Snakemake. Snakemake is a famous WfMS that support
the execution on single environments of different size from
a single-core workstation at clusters [15]. We compare the
executions on single environments of the two WfMSs and
then the execution with StreamFlow with hybrid workflow in
different configurations. As in the speedup analysis, we used
our WES dataset in all the experiments. The speedup analysis
executed on the HPC HLRS was valid in the HPC Galileo100,
thus the same analysis on this facility are not showed. The
dataset have ten samples, the reference is human genome hg38
and we analyze all 25 chromosomes.

A. Cloud environment

We create a large VM with 96 cores (Sec. III), but the
available resources do not fit the required resources. We
know the optimal number of cores for each instance from
the speedup analysis. Furthermore, we know a priori how
many instances will be generated with our dataset. The togvcf
step has 250 instances (10 samples · 25 chromosomes), and
genomeDB and jointcall have 25 instances (25 chromosomes).
Each instance requires one core; thus, before executing the
pipeline, we identify three critical steps: trim, tosam, togvcf.

Fig. 4 shows the pipeline execution with StreamFlow and
Snakemake on the cloud environment. The execution is rep-
resented with the Gantt chart, and the number inside the
bar indicates multi-instance cardinality. For each experiment,
also in the other sections, we performed three runs, the
figure represents the average run, and the whiskers represent
the standard deviation of the steps. In this environment, we
used for each instance of trim and tosam eight cores; in
this way, we do not have instances blocked waiting for the

Fig. 4: Pipeline executions entirely on the cloud environment.
In the top figure, StreamFlow execution; in the bottom figure,
Snakemake execution.

resources. Instead, Fig. 5a shows in detail the execution of
togvcf instances with StreamFlow (it is equal in Snakemake).
The first 100 togvcf instances are executed in parallel, but
when it is necessary to deploy new instances, they are blocked,
waiting for the resources.

The two WfMS runs are comparable; they have similar time
execution. The relevant difference in the two executions is
handling the merge sample step. This step needs to input 25
files of the same sample analyzed on the 25 chromosomes.
In the case of Snakemake, when these files are created,
it launches the step instance. In StreamFlow, this does not
happen because all instances are synchronized at the end
of the togvcf step scatter. However, in this pipeline, this
synchronization has little impact on the execution time.

B. HPC environment

The second experiments are on HPC resources. Fig. 6 shows
StreamFlow and Snakemake executions, which have similar
times also in this environment. In both WfMSs, we can see
how the duration of some steps, e.g. tosam, is reduced because
the HPC provides the appropriate resource for each instance.
Despite this, the total execution is worse than in the cloud,
and the reason is the high latency in scheduling jobs of HPCs.
In our pipeline, steps with a high number of instances, togvcf,
genomeDB, and jointcall, are significantly affected. Fig. 5b
shows the togvcf instances on the HPC environment in detail.
We can see a slower deployment of instances because each
instance has a waiting time for allocating the resources in
the HPC. This time varies depending on the HPC workload
because it handles different requests from many users.

The WfMSs executor are generally executed on the HPC as
a job, but it wastes resources since WfMSs do not need high
computational power. In this experiment, we use the hybrid
workflow paradigms to execute the StreamFlow executor on



(a) togvcf instances on cloud environment. (b) togvcf instances on HPC environment. (c) togvcf instances on cloud-HPC.

Fig. 5: Scheduling of the togvcf instances in the experiments with StreamFlow on different configurations.

Fig. 6: Pipeline executions entirely on the HPC environment.
In the top figure, StreamFlow execution; in the bottom figure,
Snakemake execution.

the cloud and the workflow steps on the HPC facility9.

C. Hybrid environment

In the previous experiments, we see how this pipeline
is unsuitable for a cloud environment due to the available
resources, nor for an HPC environment due to the number of
jobs to submit. Thus this suggests that a hybrid configuration
could be a good solution, taking the best of both environ-
ments. StreamFlow allows hybrid pipeline executions, while
Snakemake does not. For an optimal hybrid configuration, we
must consider the amount of data to be moved and the step
requirements. The step requirements are known by the speedup
analysis done, while a study for the amount of data is needed,
analyzing average input and output step sizes on our dataset.
We decide to execute trim, tosam, AddRG and dedup on the
HPC facility: trim and tosam for their cores’ request, while
AddRG and dedup because tosam and AddRG produce large
outputs (both about 10GB per sample with our dataset) that
are costly to move. While the other steps are executed on the
cloud. For the cloud environment, we use the same VM used
in previous experiments. Fig. 7 shows this configuration in the

9StreamFlow allows the communications with the HPC Queue manager
from outside (in this case from the cloud environment) because it makes a
ssh connection and executes the bash commands (e.g. sbatch).

upper figure; we have better performance than using only HPC
or only cloud. However, the togvcf step is still a bottleneck;
both on cloud and HPC, all the instances can not execute fully
parallel as we saw in the Fig. 5a and 5b.

Instead of running the entire step on one environment, we
can distribute the workload of the step on both environments.
This strategy does not guarantee better performance because
we must always consider the cost of moving the data. How-
ever, in this case it is not very expensive; the togvcf step has
in input about 3.5GB per sample. In addition, it is necessary
to move only those samples that are involved in HPC jobs.
Fig. 7, the lower figure, shows this second configuration, same
as the former, except that the instances togvcf are distributed
between cloud and HPC. Fig. 5c shows the execution of togvcf
instances in this configuration. The instances are executed
more in parallel than only cloud and only HPC executions. We
can see a performance improvement, which brings the pipeline
execution under 2.30h.

Fig. 7: Pipeline executions on StreamFlow with first four steps
in the HPC, all the others in the cloud. In the top figure, togvcf
is fully on the cloud; instead, in the bottom figure, togvcf is
distributed between the cloud and HPC. All the input data was
on the cloud.

VI. CONCLUSIONS

This work describes a practical approach to configuring
a pipeline for hybrid execution and evaluates the Stream-



Flow WfMS as an implementation of the hybrid workflow
paradigm. As a running example, we selected a substantial
NGS pipeline, a VC pipeline. We studied it from a computer
science viewpoint to make its execution more flexible and
efficient on different modern computing platforms, such as
cloud, HPC and hybrid cloud-HPC settings. A detailed study
of the pipeline speedup brought us to define the best com-
puting hyperparameters to execute the pipeline (e.g., number
of threads, memory and I/O pressure for each stage). The
hyperparameter optimization speeds up the original pipeline
by 300% on the cloud-only setting. The main goal of this
work is to demonstrate that the hybrid cloud-HPC workflow
paradigm can improve the performance of NGS workflows.
This is certainly true for the VC pipeline, where we experiment
that a medium-sized dataset already requires many cores for
some pipeline stages. The cloud fails to support the pipeline
at workload peaks but is enough for most of the execution.
On the contrary, the HPC well supports compute-intensive
stages but falls short in executing too many independent small
tasks as needed for some pipeline stages. The hybrid workflow
matched each pipeline stage with the most suitable execution
setting. In this way, we achieved an additional speedup of
20% in the cloud-only setting. Eventually, we compared the
Snakemake version of the VC pipeline with the StreamFlow
version. They exhibit a comparable performance in the cloud
and HPC settings at the best of their capability (in terms of
hyperparameter setting). Snakemake does not support hybrid
cloud-HPC settings. There are many future works. When the
tools, mentioned in section IV-A, are no longer in beta, it
will be necessary to consider whether to include them in the
pipeline instead of the introduced scatters. A study of the
speedup will be needed to see if the hybrid paradigm will still
be useful. In particular if the togvcf step will need several
cores, then with a dataset with many samples the hybrid
executions will be able to bring the same advantage brought
to the figure 5c execution. Another future work aims to carry
out similar studies on other pipelines to generalize the results
obtained. In addition, another future goal is to also study in
depth the costs in using hybrid executions with different IaaS
provider (e.g. AWS) and with different cloud configurations
(single large VM, multiple small VMs, Kubertenes). The term
cost means several aspects: economic cost in accessing these
environments, but also cost in terms of energy.

ACKNOWLEDGMENT

This work was supported by the Spoke 1 “FutureHPC &
BigData” of ICSC - Centro Nazionale di Ricerca in High-
Performance Computing, Big Data and Quantum Computing,
funded by European Union - NextGenerationEU; the ACROSS
project, “HPC Big Data Artificial Intelligence Cross Stack
Platform Towards Exascale” which has received funding from
the European High-Performance Computing Joint Undertaking
(JU) under grant agreement No. 955648; the HPC-EUROPA3
project funded under EC H2020 (INFRAIA-2016-1-730897).
We gratefully acknowledge the support of José Gracia, from
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